Progress Report for NASA Intelligent Systems Program (May 13, 2002)

Intelligent Engineering Time-Series Pattern Matching

- PI:
 - Dr. Dennis DeCoste, JPL
- Co-I:
 - Dr. Padhraic Smyth, University of California at Irvine (UCI)

Goal and Technical Objectives

- context: NASA missions/testbeds generate <u>massive</u> volumes of engineering time-series data but largely fail to exploit them
 - typically: millions of time points per week, thousands of sensors
 - largely checked in real-time and then ignored in future operations
 - ability to find similar historic data to current state (query) would:
 - help understand scientific or engineering phenomena (I.e. better designs)
 - e.g. find "thermal snap" events in SIM structures similar to one of interest
 - reduce cost of ops
 - e.g. find similarities (and associated corrective action logs) in previous Space
 Shuttle mission to currently detected abnormality
 - improve analysis/safety
 - provide robust basis for detecting abnormalities or known dangerous events
- our goal: develop a fast search engine for time-series data relevant to given queries, suitable for real-time and off-line mission contexts (e.g. "Google for time-series data").

Technical Problem Statement

- technical problem: find task-useful notion of "similarity" and fast way to apply it (i.e. avoid touching entire database)
- many technical challenges, including:
 - suitable "similarity" score is often domain & <u>query</u> dependent
 - traditional indexing methods quickly degrade to "linear scan" once dimensionality grows beyond 10.
 - thus, most other related research on "similarity search" assume similarity score function is <u>given</u> and focus on <u>pre-query</u> dimensionality reduction (e.g. PCA or FastMap), to enable fast off-line nearest-neighbor indexing methods (e.g. kd-trees, vp-trees, etc.).
 - however, <u>time-series</u> often impractical to reduce to ~10 predefined dims
 - multi-variant (many sensors), rich feature space (e.g. lags, frequency-domain), rich invariance space (e.g. scaling, shifting, time-warping, ...)

Technical Approach

- our solution extends/combines multiple key ideas:
 - employ rich full set of possible time-series features
 - time lags, windowed stats (e.g. mean, max high-water marks), etc.
 - efficient lazy generation: only compute specific features from large candidate space as required during model training / selection search
 - dimensionality reduction innovations
 - support <u>nonlinear</u> reduction via kernelized FastMap & locally-linear embedding (e.g. [DeCoste, ICONIPS-2001])
 - new approximate nearest-neighbor (NN) similarity methods that exploit these nonlinear embeddings and reason about induced errors
 - but, most importantly and uniquely, focuses on query-relevance, via learning/exploiting *query models* ...

Technical Approach: Query Models

- discriminative query models
 - learn robust support vector machine (SVM) classifier models
 - distinguishes query from rest/most of (subsampled) historic database
 - exploits invariance: "positive examples" include not only original query but also many shifted, scaled, time-warped versions of query
 - finds natural, query-relevant notions of similarity
 - focuses on ways query is unique from most historic data
 - also indicates feature weighting which would improve Euclidian distancebased similarity scores (for use in approx-NN indexing methods)
 - generative / probabilistic query models
 - learn state-transition models (e.g. HMM) of query behavior
 - facilitates handling missing or noisy sensor data
- hybrid approach: combine strengths of each
 - e.g. include match results from both; suggest features & variances to consider in other model types as well, ...

Data and NASA Relevance

- we initially focus on two large time-series data sets:
 - IPEX-II space interferometer (SIM) boom structure
 - data obtained from: Dr. Marie Levine, JPL (Shuttle STS-85 payload)
 - initial set: 5 minutes of 1KHz for 24 accelerometer sensors (200,000 time points); total set: 10 Gbytes
 - relevance: IPEX thermal snap events represents case of rare phenomena to be harvested and understood from large data sets

- Space Shuttle mission data
 - data obtained from: JSC (MEWS Shuttle data system)
 - currently working with hundreds of sensors from 3 recent missions
 - temperature and electrical sensors for STS 105,106, and 108
 - relevance: prime example of large-scale time-series NASA data set, with earlier-mission data similar to most latest-mission data

Accomplishments & Preliminary Findings

- key technical innovations to date:
 - efficient methods for training invariant-query SVMs models
 - enables many invariances and historic subsamples at query-time
 - radical speed-up (10-100x) of SVM classification times
 - enables complex query models that best discriminate between large numbers of query variants versus massive historic databases.
 - developed efficient methods for lazy generation of example vectors, from large space of rich time-series features
 - enables efficient batch and online training over large data sets, regardless of available computer RAM
 - enables feature selection over vast candidate spaces (for improved accuracy of query models and relevance of query matches)

Accomplishments & Preliminary Findings (cont)

Also, several advances on generative query models:

prior work (Ge and Smyth, ACM SIGKDD 2000):

probabilistic time-series query matching using probabilistic models

Accomplishments & Preliminary Findings (cont)

 example of benefit of generative query model vs traditional template matching

Detection Results with Markov Method

Detection Results with Template Matching

Technical Significance of Progress / Expected Impact on NASA

- our discriminative and generative query models provide queryrelevant notions of similarity that capture user intention and task relevance much better than traditional *pre-query* measures of similarity.
- our SVM innovations, e.g. [Decoste, ICML-2002] giving orders of magnitude speedup of classification, are likely to have widespread impact on both the machine learning field and NASA.
- impact 1: makes SVMs competitive/superior speed-wise with popular alternatives (e.g. neural networks) for which SVMs have already been demonstrated to often be superior otherwise (accuracy, robustness).
- impact 2: makes SVMs practical in new applications (e.g. realtime classification onboard resource-constrained spacecraft

URLS Describing Team

- Pl's publications page:
 - http://www-aig.jpl.nasa.gov/home/decoste/dmd-pubs.html
- Co-l's research group page:
 - http://www.datalab.uci.edu/

Facilities Used / Personnel

- JPL
 - Dr. Dennis DeCoste, Pl
 - Dominic Mazzoni, computer scientist
 - 100-node Linux Beowulf machine, for testing parallel algos.
- University of California at Irvine:
 - Dr. Padhraic Smyth, co-I
 - Dasha Chudova, graduate student
 - Xianping Ge, graduate student

References

Papers

- D. DeCoste. Anytime Interval-Valued Outputs for Kernel Machines: Fast Support Vector Machine Classification via Distance Geometry. Proceedings International Conference on Machine Learning (ICML-02), July 2002.
- D. DeCoste and B. Schoelkopf. Training invariant support vector machines, Machine Learning Journal, Volume 46(1-3), 2002.
- D. DeCoste. Visualizing Mercer kernel feature spaces via kernelized locally-linear embeddings. The 8th International Conference on Neural Information Processing (ICONIP-2001). November 2001.

Presentations

 Invited tutorial, Support Vector Machines and Other Kernel Methods: Key Concepts, Recent Advances, and Applications, Institute for Pure and Applied Mathematics (IPAM), Conference on Mathematical Challeges in Scientific Data Mining, UCLA, January 17, 2002.